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The accurate assessment of remaining useful life based on condition monitoring variables
is not a trivial task, since long-term trends are often obscured by short-term #uctuations.
Short-term variations in such variables also tend to overshadow the long-term drift in
magnitude. Stator end-winding vibrations are one of the key indicators of the remaining
useful life of turbo-driven generators. In this paper, a technique is developed to separate
long-term drifts in stator end-winding vibrations from short-term #uctuations. The
technique rests on the fact that short-term variations in winding vibrations are largely
a!ected by operational variables measured on a turbo generator, including load and
temperature. These dependencies can be captured in a model re#ecting the short-term
behaviour of the vibration amplitudes. The long-term trend in vibration amplitude is,
however, not governed by the same relationships. It is hence possible to extract the
long-term trend from the overall behaviour by subtracting the short-term e!ects of
operational variables from the overall behaviour. In this way, a reliable long-term trend is
obtained, from which remaining life assessments could be made.

� 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

Condition monitoring (CM) traditionally means acquiring data from various classes of
a plant which gives an indication of the condition of a machine [1]. Data acquired typically
include vibration signals, values obtained from oil analysis, temperatures, pressure, etc.
These sets of data are processed by various digital signal-processing techniques in order to
present them in a more understandable format. Maintenance engineers will make
suggestions on the operation of the unit in question based on an examination of these results
[2]. This process is an error-prone and lengthy one. In recent years, certain changes have been
made to this process; in particular, an attempt was made to automate the decision-making
part (that is, to remove the need for experienced people to evaluate the data).
Condition monitoring is an essential element of predictive maintenance. An ideal

condition monitoring system would accept measured data as input and will produce the
operational status, a possible mode of failure and time to failure as outputs. Since the data
used are statistical in nature, no certainties exist, and thus only a probable mode of failure
and a predicted time to failure (PTTF) can be produced.
The work reported in this paper is based on data obtained from the Lethabo Power

Station of ESKOM in Viljoensdrif, South Africa. Power is generated by six 650 MW
0022-460X/02/$35.00 � 2002 Published by Elsevier Science Ltd.
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GEC-Alsthom turbo-driven generators. Should the stator end-winding (SEW) vibrations
on such a machine become out of control the generator can be seriously damaged.
A generator hence needs rewinding when the SEW vibrations reach a certain maximum
limit. This is a very costly process, and is furthermore accompanied by hidden costs
including severe penalties to National Control for loss in production.
SEW vibrations are measured by equipment (originally set up by Alsthom) that includes

a narrow band-pass "lter around 100 Hz (2 times line-frequency). Values are reported every
5 s to an on-line system called visual automation. This system also captures a large number
of other variables re#ecting various aspects of the operational status of the generators.
SEW vibrations are currently regarded as the most important condition monitoring

variable from which the remaining life of a generator can be assessed. The problem in
determining a reliable long-term trend is that these vibrations tend to vary a great deal over
the short term. Medium-term variations are also present, including daily and weekly cycles.
The variation of interest is the long-term trend extending over several weeks or months. The
primary goal of this paper is to propose a method of identifying a long-term trend and give
advance warning of impending failure.
The condition monitoring procedure often requires the manipulation of extremely large

sets of data. For example, the visual automation system delivers 305#variables
simultaneously. Working with such a large data set not only requires signi"cant
computational power, but also complicates the process of identifying underlying causes of
undesirable behaviour. The secondary goal of this paper is hence to explore ways of
reducing a data set by removing redundant data and noise. As will be shown later, the
solution to the secondary problem presents itself naturally in the solution of the primary
one.
The methodology used for the previously mentioned goals includes the development of

a model for the SEW vibrations. From this a further long-term goal can be derived: to
identify the mechanism or mechanisms that are responsible for low-frequency variations in
the stator end-winding vibrations.
This paper is structured as follows: section 2 describes the conditionmonitoring variables

used for monitoring the condition of the turbo-generators; section 3 provides a description
of the type of neural modelling techniques used in the paper; in section 4 di!erent modelling
techniques are applied to the data in order to separate short-term variations from long-term
trends; section 5 deals with the issue of redundancy in the data set; section 6 provides
conclusions on the topics covered.

2. CONDITION MONITORING VARIABLES FOR TURBO-DRIVEN GENERATORS

2.1. BACKGROUND

Narakesari et al. [3] describe a system implemented for condition monitoring at
a thermal power plant. This system reads 1400 analogue, 400 dynamic and 100 digital
signals. These time-domain data sets are then converted to frequency domain prior to
analysis. The system was tested over a 16-month period and showed excellent results in
predicting possible failure states; some of these failure predictions were purposely ignored to
check its validity.
Monostori [4] describes several condition monitoring techniques, as well as di$culties

encountered in previous monitoring systems. These revolve mostly around the fact that
previous systems use di!erent data sets to examine di!erent aspects of a machine*usually
only in the time domain. Monostori's guidelines regarding requirements for a condition
monitoring system include the ability to measure large numbers of digital and analogue
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signals, using pre-processing methods and employing arti"cial intelligence to make
decisions based on the resulting measurements.
Two of the most frequently used variables in the continuous monitoring of generators or

large rotating machines are mentioned in Weiss et al. [5]. These are vibration and
temperature. Vibration is described as being an indication of the percentage of degradation
in performance. Other signals to be monitored include: H

�
and lubrication oil inlet and

outlet temperatures, H
�
and oil pressure, #uid levels, metal temperatures, running speed,

di!erential expansion, eccentricity, stator winding temperature, conductivity, active power,
reactive power, voltage, current and power factor [6].
When dealing with large rotating machines like generators, vibration analysis can shed

light on problems as well as give early indication of impending failures. Vibration is
measured by placing an accelerometer inside the machine on selected positions, the
problems being that the machine has to be o!-line to install these accelerometers and due to
high speeds and strenuous conditions they may loosen or go out of calibration. Although
vibration frequency trends are still in use on large machines such as generators, most
condition monitoring programmes on smaller machines today are based on vibration
spectrum analysis. Several di!erent machine problems can be diagnosed from peaks
occurring at certain frequencies. A few of them are listed below [7]:

� ¸ooseness/bearing distress: unusual number of harmonics of running speed (up to 6 times).
� Misalignment: two times running speed.
� Rotor imbalance: unusual vibration at running speed.
� Mechanical looseness: directional vibration (i.e., vibration only in one direction).
� Gear problems: gear mesh frequency peaks (number of teeth times running speed)*these
may also appear at lower magnitudes under normal conditions.

� Blades and vanes: high fundamental vibration and large number of harmonics near
blade/vane passing frequencies (number of blades/vanes times running speed).

Some common but high-risk problems can be solved by detailed vibration analysis. A few
common problems are listed below [3]:

� ¹hrust problems: an analysis of metal temperatures and especially rate of change of
temperature will give an indication of where the problem originates. Vibration analysis,
on the other hand, will give early warning signs of failure.

� Instability problems: this is a problem arising from subsynchronous vibration making
operation of high-pressure pumps all but impossible. Detailed cascade and spectral
analysis permits early detection as well as a criterion for evaluating "xes.

� Misalignment problems: misalignment can also be detected by automated vibration
analysis. The ability to correlate these analyses with process variables indicates
relationships between operating conditions and misalignment.

2.2. VARIABLES USED IN THIS STUDY

The system under investigation is a GEC-Alsthom 618 MW turbo-driven generator. The
generators each form part of a totally autonomous plant called a unit. The six units connect
to each other only on the power grid. A unit mainly consists of a boiler plant and a turbine
plant, the latter containing the generator in question. The generator is physically extremely
complex and therefore only a general description can be given.
The stator is the heaviest component of the generator and consists of grain-orientated

sheet steel (GOSS). The stator windings are in actual fact semi-hollow bars to allow water to



Figure 1. A real-life stator*notice the stator end-windings.
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#ow through them. At the physical ends of the stator the windings need to cross over each
other; these crossover windings are called the stator end-windings. A picture of these
windings is shown in Figure 1.
Over 300 condition and state variables are recorded at each unit, some with rather

obscure connections to the generator. These recordings are made on a system called visual
automation (VA), which reads these variables every 5 s and stores it for 30 days, after which
it is discarded. This causes a major problem to discern long-term trends or extremely
low-frequency variations.
The VA system sometimes loses communication with the sensors or even with its storage

medium. This causes either stuck bytes or ridiculous values to be stored. To reduce the e!ect
of these error conditions, the sets have to be checked against their standard deviations to
remove outliers. Statistical pre-processing of the data included the removal of outliers
through visual inspection.
VA data can be exported to Microsoft Excel format. One problem that appears is the fact

that the VA can only handle about 720 readings per variable at any one time. This translates
to around 1 h if the 5-s sampling rate is used. The system, however, allows lower sampling
rates. For this paper two di!erent rates were used, namely 18 min (roughly 9 days' worth of
data) and 1 h (exactly 30 days' data).
While the list of possible variables on a generator can number up to 500, the list on VA is

only 300 long. The VA set is too long to list here but this set will not always be used; in fact,
normally a reduced set of 10 state of operation variables and "ve condition variables will be
used:

2.2.1. State variables

� Volts: generator output voltage.
� MVAR: reactive load.
� PF: power factor.
� Current: generator output current.
� Pressure: actual steam pressure.
� Absolute expansion: main turbine absolute expansion.
� Speed: revolutions per minute.
� H

�
inlet temp: hydrogen coolant inlet temperature.

� H
�
outlet temp: hydrogen coolant outlet temperature.

� Coolant temp: coolant tank temperature.



TABLE 1

¸ist of state variables

Name Description Correlation Time lag (samples)

Volts Stator potential 0)2645 0
MVAR Megavolt ampere reactive 0)3106 21
PF Power factor 0)4102 0
Current Generator current 0)516 0
Pressure Actual steam pressure 0)3072 153
Exp. Turbine absolute expansion 0)2930 4
Speed Turbine speed (r.p.m.) 0)1164 36
H

�
in Generator H

�
inlet temperature 0)2105 1

H
�
out Generator H

�
outlet temperature 0)1058 152

Tank Stator cooling tank temp 0)4746 0
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The 10 short-term signals shown above were chosen because they show some similarity
with the vibrations when inspected visually. These signals are correlated with the output
(vibration) signals to determine whether they can be used to model the short-term
#uctuations in the vibrations can be modelled do contain some of the information present in
the vibrations, was actually correct.
The peak correlations (amplitude and position) with respect to one of the vibration

signals (the others exhibit similar characteristics) are displayed in Table 1. Note that
a positive time lag indicates that the vibration follows whatever signal it was correlated
with*for example, if MVAR changes, there will be a resulting change in vibration 21
samples later. Also note that although a lag may be present, the zero lag correlation will still
be high.

2.2.2. Condition variables

Five di!erent vibration signals are measured by accelerometers at various positions
inside the stator. The raw output of these accelerometers is the instantaneous acceleration of
the particular winding. These measurements are integrated twice to produce the relative
displacements. Data may be collected during di!erent stages of operation, including
start-up, run-down, normal steady operation or outages. For the case of this study only
data collected during steady state operation were used.
Histograms of all the variables were plotted to test for normality (neural techniques

usually perform best with approximately normally distributed data). It was found that the
short- and the long-term data for both the input and the state variables were close to
normal in most cases. No transformation of the data is hence required.
Frequency plots of the data displayed the expected periodic behaviour; a weekly cycle

due to reduced electricity consumption over weekends, a daily cycle due to morning and
evening peaks, and an hourly cycle since National Control of the power grid make major
adjustments every hour.

3. ARCHITECTURE FOR NEURAL NETWORK MODELLING

Architecture refers to the structure of a speci"c neural network. The simplest architecture
is that of the perceptron (a single neuron). The "rst modi"cation normally made to



Figure 2. Karhunen}Loeve network.
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a perceptron is the addition of another input that is always one; this input is called the bias
and its weight is the bias weight. Two basic architectures exist, namely feedforward and
feedback/recurrent. Feedforward networks consist of a number of sequential layers
characterized by the fact that a layer only receives inputs from a previous layer. Feedback
neural networks refer to networks in which neurons can receive inputs from both the
previous and the following layers.
In this paper, neural networks are used in two di!erent applications: non-linear

regression and data reduction. In the case of non-linear multiple regression a condition
variable (vibration) is modelled in terms of a number of state variables. This application
may include historic values of the state variables as inputs. For this application a normal
feedforward network, typically with sigmoidal activations and trained with back
propagation, will be utilized.
The second application involves the reduction of the number of input variables while

retaining as much as possible of the variation contained in the inputs (similar to principle
component analysis). For this application an auto-associative network, called the
Karhunen}Loeve network, as shown in Figure 2, will be used.
A number of neural network techniques have been proposed to solve the PCA

problem. Most of these networks consist of a basic feedforward network with a
specialized training algorithm. One such network was proposed by Mao et al. and is
extensively used in engineering [8]. This network calls for a double-train algorithm;
that is, for each sample of the data set, the network has to be trained by two di!erent
training algorithms. The recirculation or Karhunen}Loeve neural network, in its
simplest form, consists of a three-layer network: an input layer, an output layer and one
hidden layer. The inputs and training set outputs are the same (both have d neurons).
The hidden layer has m neurons, and the network is trained by normal back propagation
or other feedforward rules. If the network trains to within certain limits (the outputs
should have high correlation with the corresponding inputs) the hidden layer should
output a set of data that has the same properties as a PCA set. This set of data contains
enough information to regenerate the total set of original data and should be relatively
uncorrelated [7].
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4. MODELLING THE SHORT- AND LONG-TERM BEHAVIOUR OF
END-WINDING VIBRATIONS

The primary objective of condition monitoring is to perform remaining life assessments
on equipment. In the case of turbo-generators this important parameter will be re#ected
mainly by the long-term trend in variables like end-winding vibration amplitudes. It has
been mentioned before that short-term #uctuations in the vibration amplitude far exceed
the long-term trend in magnitude. It is, however, expected that the short-term behaviour is
mostly caused by, or at least correlated with, operational variables like the state variables
described in section 2.
The aim of this section is hence to investigate the relationship between end-winding

vibrations and the operational variables described in section 2. Based on these relationships
models will be extracted for both the short- and the long-term behaviour of vibration
amplitudes. The short-term models will be expected to be dominated by behaviour that is
not related to long-term trends (should any trend be present over the corresponding time
period). The idea is then to isolate the trend component in the long-term model by
subtracting the e!ect of operational variables, as re#ected by the short-term model.

4.1. LINEAR REGRESSION MODELS

Linear regression models using operational variables with no time lags as input were
"tted to the "ve vibration amplitudes. The results (as re#ected by the correlations between
the actual and the modelled variables) are described in the tables, both for the short- and for
the long-term data sets. The exercise was repeated for various transformations of the output
variables, in order to accentuate either variations close to zero (logarithmic transformation)
or far away from zero (exponential transformation). Di!erential and integral
transformations were also investigated to explore di!erent types of potential relationships
between the input and output variables.
Tables 2 and 3 display correlations between linear regression models and actual

vibrations for the short- and the long-term data sets. In these tables R8, V9, R2, R7 and V6
refer to "ve di!erent vibration sensors (accelerometers) on the stator end-windings. It is
clear that the operational variables have a much superior ability to model the vibrational
amplitudes over the short term compared to the longer term. This con"rms the expectation
that short-term #uctuations in vibration amplitudes are dominated by the e!ect of
operational variables such as temperature, load, voltage and power factor. The fact that
these operational variables could not accurately model the long-term behaviour indicates
that in this case other factors come into play, a!ecting the longer term trends in vibrational
TABLE 2

Correlations between linear regression models and actual vibrations for the short-term data set

R8 V9 R2 R7 V6

No transformation 0)9528 0)7971 0)8989 0)9406 0)9192
Exponential TX 0)9445 0)7960 0)8789 0)9318 0)9062
Logarithmic TX 0)9197 0)7608 0)8757 0)9426 0)9205
Di!erential TX 0)6939 0)6758 0)4209 0)6940 0)7206
Integral TX 0)8099 0)6035 0)6190 0)8947 0)8521



TABLE 3

Correlations between linear regression models and actual vibrations for the long-term data set

R8 V9 R2 R7 V6

No transformation 0)2135 0)1558 0)2069 0)2033 0)3231
Exponential TX 0)2152 0)1509 0)1943 0)1917 0)3293
Logarithmic TX 0)1955 0)1483 0)2096 0)2059 0)2828
Di!erential TX 0)1273 0)1399 0)1398 0)1784 0)1940
Integral TX 0)1788 0)1825 0)1926 0)1700 0)2795
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amplitudes, which in turn determine the remaining lifetime. It can also be seen that none of
the transformations experimented with resulted in signi"cant improvement of the linear
regression modelling accuracies. Such transformations are hence omitted in further
analyses.
Whether the accuracy of the linear models could be improved by including time-lagged

values of the input variables into the regression model was also investigated. The regression
model could then be written as

yL (n)"
�
�
���
�
���
�
���

h
�
(k)x

�
(n!k)� ,

where y( indicates the modelled value, x
�
(n!k) the input values at time lag k, and h

�
(k) the

regression coe$cients.
This model was tested for "lter lengths of up to 100 to determine if a signi"cant increase

in modelling accuracy was possible. The results indicated that only a very moderate
improvement in accuracy could be obtained. The maximum correlation between the actual
and modelled variables was obtained at a "lter length of about 40 time lags when using
128-bit data; for longer "lter lengths the correlation decreased due to quantization errors.
When using 16-bit data the optimal "lter length was between 10 and 15 time lags. The
improvements obtained were, however, only of the order of about 1%, and hence not
considered worthwhile to include. The conclusion is hence that most of the explanatory
power is contained in the zero-lag input variables.
To explore further the predictive power of the operational variables for future behaviour

of the vibration amplitude, an ARMA predictive "lter was designed to predict the vibration
amplitude D time periods into the future. The equation for this "lter can be described as

�
�
���
�
���
�
���

h
�
(k)r

����
(l, k)�"r

��
(l#D), i"1,2,P; l"0,2 ,M!1,

where P indicates the total number of input variables and M the "lter length. The results
obtained with this prediction "lter for vibration amplitude R7 are described in Table 4, both
for the training and for the test sets. SSE represents the sum of squared errors for the
respective model.
It can be seen that the ARMA "lter possesses some prediction ability, but that it starts to

fail for more than about "ve time periods (approximately 90 min) into the future. This is,
however, not long enough to be of real practical use in a condition monitoring context. The
alternative approach to predict long-term behaviour, by separating the long-term trend
from short-term behaviour, is further explored in the next section.



TABLE 4

Performance of the ARMA prediction ,lter for di+erent values of D

D Train set correlation Train set SSE Test set correlation Test set SSE

0 0)9541 0)001782 0)9146 0)00349
1 0)9175 0)003141 0)8221 0)005459
2 0)8777 0)004566 0)7129 0)007521
5 0)7747 0)007964 0)5324 0)009122
10 0)6691 0)01105 0)4578 0)008354
20 0)6517 0)01252 0)139 0)1432

Figure 3. Neural network architecture used for modelling.
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4.2. NEURAL NETWORK MODELS

As mentioned earlier, the data set used is actually a combination of three di!erent sets,
each set 2 weeks long, that have been "ltered to remove outliers and abnormal conditions.
The "rst set was collected in December 1996, the second in January 1997 and the third in
May 1997. The reason for this selection of data was to ensure a learning set (the "rst two sets
mentioned above) that did not contain signi"cant long-term trends. The three separate sets,
however, span enough time to ensure a noticeable trend over the total period, allowing the
third set to be used for demonstrating trend-"nding.
To allow a fair comparison with other modelling techniques, the full set will be used (with

some random test points) to compare modelling e!ectiveness. The same output will be used,
namely R7. However, when the trend-"nding is investigated, two-thirds of the "rst two sets
will be used to train and the rest of those sets used to test the short-term model. This is to
ensure that any long-term trend is not trained into the model.
A neural network was set-up and trained using the same short-term data that were used

earlier for the ARMA and linear regression techniques. The model consists of a 10-node
input layer, a 7-node hidden layer and a single-node output layer (R7), as shown in Figure 3.



538 E. M. P. VAN WYK AND A. J. HOFFMAN
The network was trained for 2300 epochs; the resulting correlation between actual and
modelled outputs was 0)997, which is far better than that for the ARMA models. The SSE
was reduced to 2)3191. Since SSE will be larger for larger sets, the mean SSE will be used
from now on. This value is 0)0431 for this particular network. It is also important to note
that the training took around 4 min to complete. Although the time is almost four-fold that
of the ARMA model, the network would use almost the same time to train "ve outputs
simultaneously.

4.3. DETECTION OF LONG-TERM TRENDS IN END-WINDING VIBRATIONS

The vibration data set mentioned earlier was broken up into two separate sets. The "rst
set consists of the steady data ("rst 2 weeks). The set was divided into two; the "rst was used
as the steady training set, and the second was used as the steady state model validation set.
The second set was used to test the previously trained network. This network should not be
able to recognize any long-term trends (as it was trained on steady state data), and the error
values should re#ect such trends.
By experimenting with the fast propagation coe$cient and the learning rate the network

trained 16 000 epochs in around 15 min. Correlation (of the normalized set) reported was
0)9825 with an SSE of 0)0267 for the training set while the test set achieved a correlation of
0)9377 and an SSE of 0)0495. From the test set correlation versus epochs, shown in Figure 4,
it is apparent that the best training time is about 4000 epochs. The values achieved after
4000 epochs are shown in Table 5.
To display the e!ectiveness of the modelling, the output of the neural network is shown in

Figure 5 along with the targets for the total data set. The "rst 450 points re#ect the training
data, the next 450 points the test set for the short-termmodel, and the last 450 points the set
of data that included a long-term trend component. While the modelled output closely
Figure 4. Test set correlation between actual and modelled data for feedforward neural network as a function of
the number of epochs.



TABLE 5

¹est set correlations between actual and modelled data after training feedforward neural
network for 4000 epochs

Training set Testing set

Correlation 0)98184 0)9383
SSE 0)02722 0)05

Figure 5. Graphs of training set outputs, test set outputs and target outputs for feedforward neural network.
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follows the target over the "rst test set, the target data over the second test set clearly
contains a trend component that was not captured by the short-term model.
The error made by the short-term neural networkmodel (di!erence between the modelled

and target outputs) was investigated to determine if a clear trend was visible. The downward
trend is clearly visible as shown in Figure 6, although it is still obscured by some noise. The
result is quite satisfactory though, if it is considered that only 10 out of a possible 300



Figure 6. Graph of error between target output and modelled output over training set and test sets feedforward
neural network.
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variables were used in this model. If a smoother error trend is required, the application of
a moving average or low-pass "ltering technique may be considered.

5. REDUCING DATA REDUNDANCY

There are two major reasons for removing redundant information from the set of state
variables. The "rst would be that it is di$cult to manipulate large sets of variables, and
when training neural networks, it is also time consuming. The second reason is the fact that
if redundant information is removed the activation of di!erent neurons could be used to
ascertain what e!ect each input has on the output. In other words, if the input set could be
transformed to a set of orthogonal inputs, it would be possible to "nd cause}e!ect
relationships between input and output variables.
The most widely used technique to achieve this objective is that of principle component

analysis. As described in section 3, a neural network technique can also be implemented to
reduce the number of signals. Although the neural technique does not guarantee
orthogonality among the reduced set of signals, it can be used to obtain a reduced set of
vectors that have non-linear dependencies on the input set. To ensure a non-linear set, there
need to be at least three hidden layers in the network. Since neural network techniques
provide more #exibility they were the preferred method for implementing data reduction.
A critical aspect of data reduction is to "nd the optimal number of signals to retain,

corresponding to the number of hidden nodes in the network. The only reliable method is to
use trial and error until the smallest set that performs satisfactorily is found. The short data
set used earlier (10 variables) was used as inputs and targets for 10 recirculating networks
with 1}10 hidden nodes. The correlations between input and output for both the test sets



TABLE 6

Performance of the Karhunen}¸oeve network with di+erent numbers of hidden nodes

Training set Test set

Nodes Correlation SSE Correlation SSE

1 0)8186 0)0924 0)8102 0)0949
2 0)8778 0)0773 0)8863 0)0744
3 0)9161 0)0646 0)9117 0)0663
4 0)9440 0)0529 0)9439 0)0540
5 0)9713 0)0386 0)9702 0)0385
6 0)9870 0)0257 0)9890 0)0242
7 0)9970 0)0126 0)9971 0)0120
8 0)9973 0)0119 0)9969 0)0128
9 0)9979 0)0105 0)9979 0)0105

TABLE 7

Performance of the Karhunen}¸oeve network with seven hidden nodes

Volts MVAR PF Current Press Exp Speed H
�
in H

�
out Coolant

0.9969 0)9966 0)9962 0)9954 0)9974 0)9979 0)9970 0)9969 0)9964 0)9953
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and the training sets were recorded and are displayed in Table 6. The test was run for 1250
epochs with a learning rate of 0.01 and then for another 1250 epochs with learning rate
control.
From the result it was decided that a safe number of reduction (hidden layer) nodes to

lose a very small fraction of the variation in the input set is seven. One would, however,
expect to also obtain reasonably good results by retaining only "ve nodes. The 10 outputs
were correlated with the inputs using seven hidden nodes to determine the e!ectiveness of
the reduced set to regenerate the inputs. The correlations were as indicated in Table 7.
It is clear that all inputs are generated with a high degree of accuracy. It would be

desirable for the resultant signals to have small cross-correlations. When this was
investigated it was found that this condition is largely satis"ed. The zero-lag
cross-correlations between the reduced set of signals are plotted in Figure 7 where the unity
autocorrelations appear along the diagonal region. Note that the absolute values were used.
Also note that the cross-correlations were not exactly zero; this suggests that further
reduction in the number of nodes may still be possible.
The principle components (the outputs of the hidden nodes in the previous network) were

then used to model the stator end-winding vibrations. The short-term set was used since the
best modelling accuracy was obtained for this set using the complete set of input variables.
The network had seven input nodes, four hidden nodes and a single output, set to target
vibration R7. The test was run for $20 000 epochs taking less than 8 min (compared to the
15 min for the full set and 16 000 epochs). The test set correlation is shown in Figure 8. The
training correlation after 19 765 epochs was 0)981032 and the SSE was 0)027806. For the
test set the correlation was 0)941656 and the SSE was 0)047864. From Figure 8 it can be seen
that the maximum test set correlation is almost reached after 8000 epochs. The results
achieved with the full set of 10 inputs and with the reduced set of seven inputs are compared



Figure 7. Cross-correlations between the reduced set of variables.

Figure 8. Correlation between target and output values for the test set using a reduced set of seven input variables.
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in Table 8. Figure 9 displays the error graph for the long-term data obtained with the
reduced set of seven input variables.
Some observations can be made:

� While the training set delivered slightly worse results for the reduced set of inputs, the test
set results were slightly improved, indicating better generalization.

� The full set showed a de"nite peak in test correlation at about 4000 epochs, while the
reduced set showed a continued ascent, indicating a lesser inclination to over"t with the
reduced set.

� The reduced set trained 8000 epochs in 3 min while the full set trained 4000 epochs in
about 7)5 min, indicating the computational advantages when using a reduced set.



TABLE 8

Comparison between modelling e.ciencies of the full set and the reduced set of input signals

Full set (4000 epochs) Reduced set (8000 epochs)

Training set Testing set Training set Testing set

Correlation 0)98184 0)9383 0)980696 0)940965
SSE 0)02722 0)05 0)028047 0)048528

Figure 9. Error graph for the long-term data obtained with the reduced set of seven input variables. Train
Output Vib R7
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6. CONCLUSIONS

The degree to which the initially set goals have been achieved is brie#y summarized
below:

� Identi,caion of a long-term trend from short-term -uctuations in order to give advance
warning of impending failure: by developing a short-term neural network model, the
long-term trend was found by applying the model to long-term data, and plotting the
error signal.

� Introduce a way of reducing a data set by removing redundant data and noise: by utilizing
a neural network realization of the Karhunen}Loeve transform, a set of principle
components was derived. The networks showed great e!ectiveness with reductions of
between 30 and 50%. It provided a fast, intuitive and easy method for removing
redundant data and apparently even noise to some degree.

� Assist in identifying the mechanism or mechanisms that are responsible for low-frequency
variations in the stator end-winding vibrations: the result here was not de"nite, but rather
an indication of possibilities that can be further explored. By examining the connection
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strengths from each principle component to each output, the inputs with the most
in#uence could be found. By examining in turn the correlations of these inputs with the
original inputs, the input data with the most in#uence could be found.

It should also be borne in mind that these tests and simulations have all been done with
relatively small training sets of data. This was done due to time constrictions as well as
computational restrictions and lastly a shortage of long-term data sets. These results could
hence de"nitely be expected to be improved upon in future.
What is, however, of crucial importance is for data storage to be well co-ordinated.

Important events which took place at each generator at a speci"c time should be recorded.
This would allow anomalies in the data to be explained. Should these obstacles be overcome
it would open the way for neural networks to recognize reliably impending situations and
failures.
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